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Abstract

This report presents computations for the Type IV shock-shock

interference flow under laminar and turbulent conditions using unstructured

grids. Mesh adaptation was accomplished by remeshing, refinement and mesh

movement. Two two-equation turbulence models were used to analyze

turbulent flows. The mean flow governing equations and the turbulence

governing equations are solved in a coupled manner. The solution algorithm

and the details pertaining to its implementation on unstructured grids are

described. Computations were performed at two different freestream Reynolds

numbers at a freestream Mach number of 11. Effects of the variation in the

impinging shock location are studied. The comparison of the results in terms of

wall heat flux and wall pressure distributions is presented.
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Nomenclature

Jacobian matrix

speed of sound, m/sec

matrix associated with the viscous fluxes
boundary term
constant

local skin friction coefficient

specific heat at constant pressure, J/kg-K

specific heat at constant volume, J/kg-K
total energy, J/kg
inviscid flux

damping function
viscous flux

specific enthalpy, J/kg
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Re
S
T
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U
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V

x,y

turbulent kinetic energy, J/kg
Mach number; mass matrix
element shape functions; number of sides
direction cosines
production terms
pressure, N/m 2
Prandtl number
heat transfer rate, MW/m 2

stagnation heat flux in the undisturbed flow, MW/m2
radius of the cylinder, in
eigenvector matrix
Reynolds number
source terms

temperature, K
time, sec
conservation variable

component of velocity in x-direction; velocity component
in indicial notation, m/sec

component of velocity in y-direction, m/sec
coordinates of the reference frame

GREEK SYMBOLS

a constant

6 Kronecker delta; length of an element side;
boundary layer thickness

e turbulent dissipation rate, m2/sec a

eigenvalue limiter

?' ratio of specific heats

F edge of an element

,_ eigenvalue

/_ viscosity, N-s/m 2

v kinematic viscosity, m2/sec

0 angle

p density, kg/m 3

o" normal stress, N/m 2

_" shear stress, N/m 2

o) specific dissipation rate, 1/sec

.Q area of an element, m 2

SUBSCRIPTS
i,j,k indices of notation
inf freestream conditions
e element
L left value; lumped value
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n normal direction

o stagnation value
peak maximum
s side

T turbulence quantity
w wall

x,y coordinate axes

_, freestream

SUPERSCRIPTS
* current value

m time step index
+ near wall non-dimensionalization

Introduction

Intense aerothermal loads that result from shock-shock interferences

(especially Type III and Type IV interferences) on a hypersonic vehicle are

critical for design purposes. Computational methods are being developed at

the NASA Langley Research Center to accurately predict these loads. These

efforts have led to the development of LARCNESS (acronym for Langley

Adaptive Remeshing Code NaviEr Stokes Solver) which is a software package

that includes a flow solver based on a point-implicit, upwind algorithm, and an

unstructured mesh generator based on an adaptive remeshing technique.

LARCNESS has been used successfully in resolving complicated flow features

that result from shock-shock interferences under laminar flow conditions. The

details of the algorithm and the computational results are found in Reference 1.

In a typical Type IV shock-shock interference problem a supersonic jet is

produced which impinges on the body as shown in Fig. 1. This impingement

causes highly localized peaks of wall pressures and wall heat fluxes.

LARCNESS was used to analyze this problem computationally using

unstructured grids {Ref. 1}. There is some experimental evidence to show that

the shear layers surrounding the supersonic jet are turbulent during

experiments {Ref. 2}. This indicated a need for implementation of a turbulence



model in LARCNESS to investigate the turbulence effects, and this effort

addressed this problem.

Algebraic turbulence models (mixing-length type) have been

successfully used in compressible turbulent flow computations (for example,

see Ref. 3). However, their application is limited to wall bounded flows using

structured grids. They also lack generality in the context of application to

complicated geometries and complex flow fields such as shock waves, jets and

shear layers. On the other hand, the two-equation models are not limited to wall

bounded flows, and offer the flexibility of dealing with complex flow features

using unstructured grids. In general, these models introduce two turbulence

parameters, one for the turbulence kinetic energy, k, and the other for the

turbulence length scale determining parameter (for example, the turbulent

dissipation rate, E ). These turbulence parameters which define the turbulent

viscosity in the flow field are governed by two partial differential equations that

must be solved together with the mean flow equations. Although there are

several higher-order turbulence models like the Reynolds-stress models, they

are still in the developmental stage, leaving the most popular two-equation

models for practical applications.

The two-equation model was first developed by Jones and Launder {Ref.

4}. Several modifications to this model have been proposed recently, and

concise reviews on these models may be found in References 5, 6 & 7. Among

the many two-equation models available, only a few are capable of modeling

high speed compressible turbulence. One such model is the compressible k-_

model with near-wall damping functions developed by Zhang, et al. {Ref. 8}.

This is the most widely used two-equation model in the literature, and it has

been very successful for a large variety of different flow situations, including free

shear layers. However, the k-E model suffers from several shortcomings.
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Some of these shortcomings include lack of sensitivity to adverse pressure

gradients, problems related to numerical stiffness in the near'wall regions and

in some cases underprediction of wall heat fluxes. {Ref. 9 & 10}.

On the other hand, another very successful two-equation turbulence

model, the k-(o model originally developed by Wilcox {Ref. 11} is robust and

accurate in predicting near wall turbulence even under adverse pressure

gradients. The major shortcoming of the k-(o model is its high sensitivity to

freestream conditions and hence its inability to predict free shear layers

accurately. A combination of the k-s model and the k-o)model appears to

eliminate each other's shortcomings and give rise to a better turbulence model

{Ref. 12}. Recently several zonal approaches combining these models were

successfully attempted in solving high speed flow problems {Ref. 12 & 13} and a

similar approach is used in the current work. Since, in the present code,

structured grids are used near the wall and unstructured grids elsewhere, the k-

co model is used in the structured grid portion of the mesh and the k-s model is

used in the unstructured grid portion of the mesh.

Some work has been reported in the literature regarding the

implementation of two-equation turbulence models for compressible flow in the

context of unstructured grids. Marcum and Agarwal {Ref. 14}, implemented the

k-s model in a Galerkin finite-element procedure for solving the Reynolds-

averaged mean flow equations. Mavriplis {Ref. 15} implemented a

compressible version of the k-s model in a multi-stage Runge-Kutta time-

stepping scheme using a multigrid strategy on unstructured grids. In both of

these papers however, the mean flow equations and the turbulence equations

were solved in an uncoupled manner. Morrison {Ref. 16} implemented the k-s

model proposed by Zhang, et al. {Ref. 8} in a cell-centered finite-volume

technique, using the Roe's flux difference splitting technique in a coupled
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manner (solving all the governing equations simultaneously) on structured

grids. In the present work, unstructured grids are employed, and both methods

of solving (coupled and uncoupled methods) the governing equations are

investigated.

The purpose of this report is to present the laminar and turbulent flow

computations using two-equation turbulence models in association with an

unstructured grid solver for the Type IV shock-shock interference problem. First

the turbulence models, along with some details regarding its implementation

into the LARCNESS code, are presented. The computational results for the

shock-shock interference at two different freestream Reynolds numbers in a

Mach 11 flow over a 3 inch cylinder are presented. A comparison of the laminar

flow computations with the turbulent flow computations are made. Conclusions

are drawn based on these studies.

Governing Equations and the Turbulence Models

The basic governing equations for the mean flow are the Favre-averaged

Reynolds equations along with Boussinesq approximation and are given as

follows:

a_ + a (p_)) = 0 (1)
at ax:/

[_,

axj
at a xj axi a xj

ax k 3

(2)



4" _ -u

at a_ a,_ a,_

+ ,

_ ok_a,_j (3)
+

("tilde" over-bar represents Favre mass averaged quantity, and plain over-bar

represents the time averaged quantity). In the above equations, /.t-T is the

turbulent viscosity, PrTis the turbulent Prandtl number and k is the kinetic

energy of turbulence given by

The k-e model

k = pu"iu"i 12p (4)

In the k-e model, the turbulent viscosity is expressed in terms of turbulent

,= +
at a_

This model introduces two more unknowns in the original set of governing

equations, i.e., the turbulent kinetic energy (k) and the turbulence dissipation

rate (_), which are governed by the following partial differential equations

expressed in the conservation form •

_axjj (7)
a;9

kinetic energy k, and the turbulence dissipation rate e as follows:

-
#r= _ (5)

where C/.t is a constant and the dissipation rate _ is expressed as follows:

p v_ _'ia U"i

_= aXEaxj
- (6)
P



CTE/_Xj]

at a xj k axj

in the above equations, Pk represents a production term given as follows

(8)

axE Lz axj axi/ 3  axkl 3 axkJ

where C1,C2, (Tk,_e, and a are constants, and MTis the local turbulent Mach

number defined

a, as follows:

in terms of turbulence kinetic energy and local speed of sound

where _ is defined as

C_k (13)

The governing equation for the turbulent kinetic energy k in this model is the

same as the governing equation in the k-e model except the dissipation terms

are expressed in terms of the specific dissipation rate _, and given as follows:

MT= _2 (10)

The constants used in Eqn. (7) and (8) are given below (11)

Cl = 1.44

C2= 1.92

O'T= 1.0

ae=l.0

a=0.5

The k-m model

In the k-co model, the turbulent viscosity is expressed in terms of turbulent

kinetic energy k, and the specific dissipation rate _ as follows:

-- pk
#T=_ (12)

CO



_(-pk_dj) Pk-C_ -p_(1 + _M_)+_ _ -_k)_)xjJ (14)
at a Xj a Xj

The various constants in Eqns. (13) and (14) are the same as the constants in

the k-e model. The governing equation for _, the specific dissipation rate, is

given as follows:

(_ +_(_J) =_ p___(__) _ _,_x/
o_t o_. k _x}

(15)

where

= C1- 1; ,82 = C_(C2- (1+o_M2)) (16)

In order to incorporate the low turbulent Reynolds number effects (that are

present in the laminar sublayer region near a solid wall) into the turbulence

model, a set of damping functions as suggested in Ref. 11 are implemented in

the current model.

The cross-diffusion term

Since the turbulence dissipation rate, _, is related to the

dissipation rate r_, equation (8) can be written in terms of _ as follows:

(_) +#(_) =_ _,-_(_ _)+
o_t _x} k

Comparing Eqns.

aXE

specific

+ 2 °_fi°_ (_ ( 1 7)

(8) and (17) it can be easily noticed that the difference

between the _ equation expressed in terms of _ and the _ equation is the cross-

diffusion term that appears at the end of right-hand-side of Eqn. (17). In other

words dropping of the cross-diffusion term from the transformed _ equation

results exactly in the governing equation for _. Since the governing equation

for k is the same in both the models many of the shortcomings of the k-s model
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are attributed {Refs. 12 & 17} to the presence of this cross-diffusion term in the

governing equation Conversely, the shortcomings of the k-r_ model are

generally attributed to the absence of this cross-diffusion term in the

governing equation. In the zonal approach, the formulation is made according

to the k-co model and the cross-diffusion term is introduced in the r_ governing

equation in the regions where the k-e model is employed through a blending

function. In the current formulation, _ is used as a length scale turbulence

parameter and the cross-diffusion term is introduced into the _ governing

equation to recover the k-e model wherever needed.

equations are as follows.

the following discussion.

conservation form as

Implementation in LARCNESS Code

The set of governing equations are solved using an upwind, point-

implicit, cell-centered scheme based on Roe's averaging. The point-implicit

time marching procedure for the Navier-Stokes equations is given in Ref. 1.

Extension of this solution procedure for Reynolds averaged mean flow

equations was accomplished by including additional terms in the mean flow

equations. In the current approach the four mean flow equations and the two

turbulence governing equations are solved in a coupled manner, as proposed

in Ref. 16.

The details of the solution procedure for the coupled set of governing

For the sake of simplicity, over-bars are eliminated in

The set of governing equations can be written in the

a{u} a{F)i a(G}i
_+ - +{S} (18)

at a xi a Xi

where {U} is the vector of conservation variables, {F} is the inviscid flux vector,

{G} is the viscous flux vector, and {S} is the vector containing the source terms
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where axx , (_yy and ,rxy are the stress components, Dkx, Dky, Dmx, and Dmy

are the diffusion terms in the turbulence equations, and qx and qy are the

components of the heat-flux vector. A calorically perfect gas is assumed.

The stress components are given by

and

axa

Txy = _yx = (/_+/_T) -- +
ay

2pk (22)

(23)

1+

ay a

The components of the heat-flux vector are given by

qx=_Cp(_._r+ I,Z__T)aT
I

;x
and

(24)

(25)

qy=-Cp(-_+ lZ-_T) aT
ay

The diffusion terms in the turbulence equations are given as follows:

Ekl a--X ; Dky= + a y

and

The solution

(26)

(27)

Do)x = (_+ _T I a(o ; Do)y: (_+ #_____o))a(o (28)
-_) ax ay

domain is discretized spatially into an unstructured grid of

triangular and quadrilateral elements, and the set of governing equations is

solved subject to appropriate initial and boundary conditions. The governing

equations for each element can be expressed in an integral manner as given

below.
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{S}d_ (29)

where "Qe is the area of the element. Assuming a piecewise constant

distribution of the unknowns U and linearizing U with respect to t, Eqn. (29) can

be rewritten as shown below.

{Uo}m+l"{Uo}m = l-_-(I__2zlt_2e o _ -_jj(_{G}j_{F'}jld_2+ f__jj.]J_2e{S}d_ (30)

where Ue represents element level unknowns and m denotes the time level.

By application of the divergence theorem to the flux terms on the left-hand-side,

Eqn. (30) can be written as follows:

d_ = fl"e ({ Gn}- { Fn}) dr
(31)

where Fe is the element boundary and the subscript n denotes the flux normal

to the element sides.

Assuming the viscous fluxes to be a constant along the sides of an

element and the source terms to be constant within the element, Eqn. (31) can

be written as

[nside }
{AUe} m = At _ _ &s[{Gn}m+l _{Fn}m+lls +_2e{Se}m+ 1 (32)

where +s is the length of the side under consideration, and nside denotes the

total number of sides in the element. In Eqn. (32) Gn and Fn represent the

viscous and inviscid fluxes respectively, and Se denotes the source terms.

Computation of these quantities is discussed in the following section.

Treatment of the Fluxes

The inviscid flux vector Fn appearing in Eqn. (32) is replaced by a

numerical flux given by
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{Fn}=_E(FR}+{FL}- [14] ((UR}-(UL})] (33)

where subscripts R and L denote the right and left values with respect to the

side s, and the term [IAI] ((UR}-{UJ)is the first-order dissipation term as

suggested by Gnoffo {Ref. 18}. The matrix [A] is the Jacobian of the inviscid flux

vector evaluated at the Roe's average state {Ref. 19}, and has the property

{FR} - {FL} = [,4] ( {UR}-{UL} ) (34)

This matrix can be factored as

[4 = [R] "1[A] [R] (35)

where [.4] is the diagonal eigenvalue matrix of [A] and [R] is the corresponding

eigenvector matrix of [A]. The complete form of the Jacobian matrix [A] and the

matrices [Fi] and [/:?]-1 are given in Ref. 16.

The matrix [ IAI] is defined as

[IAI]=[RJ'[ 1,4][R] (36)

where [ 1.41] is the diagonal absolute eigenvalue matrix of [A]. Matrix [A] has

six eigenvalues/1,i, and the minimum value for the eigenvalues/1,/ is restricted

according to Harten {Ref. 20} such that

IA,i =

0.5

where e,t is the eigenvalue limiter.

IZi, I_,il>e_ /

(37)

The determination of the numerical viscous fluxes involves evaluation of

the first derivatives of the components of velocity, the temperature, the

turbulence kinetic energy, and the turbulence dissipation rate at the nodes. In

the cell-centered scheme discussed above, the primitive variables are assumed

to be piecewise constant. That is, they are assumed to be constant for an
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element. In order to compute the first derivatives at the nodes, a bilinear

variation of these primitive variables is assumed for quadrilateral elements, and

a linear variation is assumed for triangular elements. Under these assumptions,

the first derivative of a variable, T, for example, at any point in an element can

be written as

ax (38)

where[NJaretheshapefunctionsand{a_-x} isthenodalfirstderivativevector

of the element. By multiplying left-hand-side of Eqn. (38)

integration by parts we obtain

I.Q a--T{N}d'Q= IaxFenT{N}dF I. Q
e e

by {N} and on

T/ N/
[-_-x) d..Q (39)

where n are the direction cosines. By multiplying the right-hand-side of Eqn.

(38) by {N} and on integration we obtain

e
(40)

where [ML] is the lumped mass matrix obtained by diagonalizing the consistent

mass matrix or the capacitance matrix. By substituting Eqn. (40) in Eqn. (39)

and rearranging, we obtain the following expression:

(41)
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To compute the first derivative at a particular node i, an assembly operation is

performed where contributions from all the elements (ne) that have ias a

common node are summed up.

for the first derivative at node L

oqT _ 1 I
Ox i [ ML]i

This operation results in the following relation

[oqx) I

where [ML.]i is the coefficient of the global (assembled) lumped mass matrix for

node L BTxi is the assembled boundary term (needs to be evaluated only at the

domain boundary) surrounding node i, and Te is the temperature of the element

e.

The source terms in the turbulence equations are computed at the

element level. The velocity derivatives needed at the element level to compute

these source terms are obtained by averaging the nodal derivatives of the

element. The cross-diffusion terms required for the k-e model are also

computed at the element level, similar to the source terms.

Point-Implicit Time Stepping Technique

Substituting Eqn. (33) for the inviscid numerical flux in Eqn. (32) and

rearranging, we have

1 nside

{z ue}r"= ,4__tt s
-_e

nside (43)

+ _._ 5s{Gs}m+l+y2e{Se} m+l}
s=l

where {Gs} represents the numerical viscous flux vector for the side s and the

subscript e represents the element under consideration. The time integration

scheme as shown above is a fully implicit technique and leads to solving the

entire global system of equations. Equation (43) can be linearized by

employing a Gauss-Seidel point relaxation scheme which results in a point-

implicit scheme where the set of governing equations is solved at each element
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as given in {Ref. 1}. The point-implicit scheme is represented in the following

equation.
nside

I+ z_t _, _12_IA_*.[B]m)s _Z_t[_s]rnl {z_ue}m =

nside

_ee __l _s * m * * m,4t{.1 [{FR}+{FL} -[I/_]({UR}-{UL} )Is

nside

+ _ &s[{Gs}m]+_2e{Se} m} (44)
s=l

where superscript * refers to the latest available value. Matrix [Bs] represents
aS

the implicit contribution from the viscous fluxes and the matrix [_-0 denotes the

Jacobian of the source terms in the governing equations for the turbulence

variables.

LARCNESS Computations

This section describes the application of LARCNESS to the problems of

shock-shock interferences in hypersonic flow. Comparison of laminar flow

computations with that of turbulent flow are made wherever applicable. The

turbulence models used in this work do not predict transition and in all the

applications discussed in this section, no account was made for the transition

from laminar to turbulent flow. For the application problems, an initial solution is

obtained without the source terms in the turbulence governing equations and

these terms are introduced later into the equations to obtain a final converged

solution. The freestream turbulent viscosity is always assumed to be of the

same order of magnitude as the freestream laminar viscosity and the freestream

turbulent kinetic energy is assumed to be 0.1% of the freestream mean flow

kinetic energy. The validation of the code was performed by two test cases and

the results are presented in {Ref. 9}.

The computer program for the solution algorithm is fully vectorized on the

CRAY computers and requires a memory of 11.8 MW for the turbulent flow
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computations on a 200,000 element mesh compared to 9.4 MW of memory for

laminar computations on the same mesh. On a CRAY-C90 computer,

LARCNESS code took 8.44E-06 CPU seconds/element/iteration for laminar

flow computations (for a 35,000 element mesh) compared to 1.07E-05 CPU

seconds/element/iteration for the turbulent computations on the same mesh. It

is interesting to note that the increase in the CPU time for the turbulent

calculations is only 20% more than that for the laminar calculations.

Type IV Shock-Shock Interference in a Mach 11 Flow

The wall pressure and heat flux amplification is a maximum for the Type

IV shock-shock interference relative to the rest of the interferences as

mentioned in Ref. 21. A schematic of the Type IV interference is shown in Fig. 1.

In a typical Type IV interference, the impinging shock interferes with the near

normal portion of the bow shock resulting in a supersonic jet that impinges on

the body. This supersonic jet terminates through a normal shock before it

reaches the body, creating a small stagnation region where the heat fluxes are

the maximum. The supersonic jet is surrounded by shear layers, the nature of

which (either laminar or turbulent) plays a role in augmenting the wall heat

fluxes {Ref. 22}. To investigate the effects of turbulence this problem was run

with both the laminar and turbulent options under two sets of freestream

conditions as given in Table A. These freestream conditions are for air which is

considered as a perfect gas with ratio of specific heats, 7, of 1.4. The first set of

conditions, referred to as condition A (throughout this report), is at a freestream

Mach number of 11.36 and freestream Reynolds number of 6500 based on the

cylinder radius, and is assumed to correspond to laminar shear layer flow

conditions. The second set, referred to as condition B (throughout this report), is

at a freestream Mach number of 11.03 and freestream Reynolds number of
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414,000 and is assumed to correspond to turbulent shear layer flow conditions.

These freestream condition sets correspond to experimental test conditions to

be reported at a later date by R.J. Nowak_*_, For both the sets of freestream

conditions, the wall temperature was fixed at 530°R. Since the freestream

conditions played a major role in the computations, results from LARCNESS

computations are presented in two separate subsections for the two condition

sets inthe following discussion.

Freestream condition set A

This set of freestream conditions corresponds to a lower Reynolds

number as mentioned above. Before the shock-shock interference problem

was attempted, an undisturbed flow (without the shock-shock interference)

under the same conditions over a 1.5 inch radius cylinder as shown in Fig, 2

(problem statement) was analyzed using the LARCNESS code. The theoretical

stagnation heat flux, qo, was computed from the Fay and Riddel theory {Ref. 23}

for the undisturbed flow without the shock-shock interference. The wall heat

flux distribution q from the LARCNESS computations non-dimensionalized with

respect to the theoretical stagnation heat flux qo is shown in Fig. 3. The

computational stagnation heat flux was within 2% of the theoretical stagnation

heat flux.

For the shock-shock interference flow problem as shown in Fig. 4,

successive mesh adaptation was performed until the last two meshes

essentially gave the same result. These meshes consisted of: (a) highly

stretched structured grids next to the wall, and (b) solution adapted unstructured

grids everywhere else. The unstructured portion of the mesh adaptation was

accomplished by a combination of three different adaptive techniques. The first

*** Dr. R.J. Nowak can be reached at NASA LaRC by phone at (804) 864-1341 or by mail at M/S
408A
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technique is the adaptive remeshing where a new mesh is created based on

the solution from a previous mesh {Ref. 24}. The adaptive remeshing did not

produce the level of refinement that was required in the shear layers. Therefore

the second technique of subdividing the elements in the shear layer region was

employed in association with the remeshing technique. To further enhance the

quality of the mesh, a third technique known as adaptive mesh movement was

used where the nodes in the mesh are moved closer to each other wherever

higher levels of mesh refinement was desired. This combination of mesh

refinement techniques applied to high speed flows is described in {Refs. 9 &

25}. The final mesh consisted of 210,195 elements and 119,959 nodes. The

size of the smallest element was 4X10 -7 inches. A portion of this final mesh

near the stagnation region is shown in Fig. 5. Convergence criterion was set at

3 or 4 orders of magnitude reduction in all the residuals corresponding to the

mean flow variables and less than 1% change in the peak heat flux value over a

specified period of time (at least 1000 iterations). The convergence in terms of

peak heat flux history for the last 3000 time iterations on the final mesh for

condition set A under laminar flow conditions is shows in Fig. 6. Table B

includes the coordinates of the two triple points and the transmitted shock

lengths for both the laminar and turbulent cases corresponding to freestream

condition set A.

The total velocity contours, pressure contours, and first derivative of

density contours near the stagnation region, from the LARCNESS computations

on the final mesh, are shown in Fig. 7, 8, and 9. The x and y axes shown in

these figures are reference axes parallel to the coordinate axes X and Y (the

origin of these reference axes is not shown at the center of the cylinder which is

the origin for the coordinate axes). These contours show the intricate details of

the flow field the shear layers, the supersonic jet and the jet terminating shock.
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The jet terminating shock location as shown in these contour plots suggests that

this case does not represent the peak Type IV case where the jet terminating

shock is parallel to the cylinder wall and hence the supersonic jet impingement

is normal to the wall. Turbulent flow computations were performed using the

LARCNESS code and the total velocity contours near the stagnation region

from both the laminar and the turbulent computation are compared in Fig. 10.

The shear layers in the turbulent case appear to be thicker than that of the

laminar case. The wall heat flux distribution from the turbulent computations

was compared with that of laminar computations and is shown in Fig 11A.

Although there was a shift in the location of the peak heat flux (about 2o), there

was no significant difference between the magnitudes of the peak heat flux in

both the cases. The reason that the wall heat flux distributions are not very

different from each other is that the freestream Reynolds number is very small

and the influence of the turbulence effects on the flow field are negligible.

Similarly the wall pressure distributions from the laminar and the turbulent

computations is shown in Fig 11b. A trend similar to that of the wall heat flux

distributions was observed for the wall pressure distributions. To investigate the

influence of the impinging shock location in the inlet plane of the computational

domain, the original location of the impinging shock was lowered by 0.055

inches and laminar computations were performed for this new impinging shock

location. The comparisons of the wall heat flux distributions and the wall

pressure distributions from the laminar computations for the two impinging

shock locations are shown in Fig. 12. For this freestream condition set,

although there was a difference in the locations of the peaks in terms of wall

pressures and wall heat fluxes as expected, there were no major differences in

the magnitudes of these two quantities for the two impinging shock locations.

Table C contains the location of the peaks and values of these peaks (in terms
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of degrees) of wall pressures and wall heat fluxes for both laminar and turbulent

cases for this freestream condition set A. The magnitudes of the peak pressure

in Table C are non-dimensionalized with respect to Po, the theoretical

stagnation pressure of 0.5159 psia. The magnitudes of the peak heat flux in the

table are non-dimensionalized with respect to qo, the theoretical stagnation heat

flux of 20.26 Btu/ft2-sec.

Freestrearn condition set B

This freestream condition set corresponds to a higher Reynolds number

and is assumed to be under turbulent shear layer conditions. To understand

the effects of turbulence on the flow field, this case was run under laminar as

well as turbulent conditions. The most refined mesh for the turbulent case

consisted of 245,873 elements and 156,432 nodes. The size of the smallest

element next to the wall in the normal direction is 4x10 -8 inches. A similar level

of refinement was obtained on the mesh for the laminar case. The convergence

criterion was the same as that mentioned in the discussion under freestream

condition set A. The contours of pressure, and the first derivative of density are

shown in Figs. 13, 14. Again in these contour plots, the axes x and y represent

the reference axes only and their origin is not at the center of the cylinder.

Figure 15a show the total velocity contours in the entire flow field. Figure 15b

shows the total velocity contours near the stagnation region for the laminar case

and Fig. 15c shows the total velocity contours for the turbulent case. One may

observe from this figures 15b and 15c that the turbulent shear layers are thicker

than the laminar shear layers. To obtain an estimate of the shear layer growth

and thickness, a normal cut parallel to the y-axis was made through the shear

layer in the region between the 1st and the 2nd triple points (see Figure 1 and

4). The shear layer thickness at a given x-location is defined as the y-distance

between the upper and lower points in the shear layer where u-velocities are
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97.5% of the upper and lower local freestream velocities respectively. At x =

-2.076 inches from the center of the cylinder, the shear layer thickness for the

turbulent case was 0.3134 inch; and the shear layer thickness for the laminar

case was 0.2663 inch (about 15% thinner). However, the shock-shock structure

including the triple points was farther from the body for the turbulent case

compared tothe laminar case. In order to compare laminar and turbulent shear

layer thickness at the same distance from the respective 1st triple points, the

laminar shear layer thickness was calculated at x = -1.973 inches, which is the

distance from the 1st triple point for the above turbulent shear layer thickness.

The shear layer thickness for the laminar case at this location was 0.2015

inches which is significantly thinner (about 67%) than the turbulent case.

Similar to the case of freestream condition set A, the jet terminating shock is not

parallel to the wall indicating that this case does not represent the peak Type IV

location. Therefore, the shear layer effects on the stagnation region are

predominant. Fig. 16 shows the streamline contours superimposed on the total

velocity contours for the turbulent case. These contours show that a major

portion of the flow going towards the stagnation point is coming from the

supersonic jet region and the upper shear layer.

The wall heat flux distributions from the laminar and turbulent

computations are shown in Fig. 17a. The peak heat flux distribution from the

turbulent computations is significantly higher than peak heat flux from the

laminar computations. The location of the peak in the turbulent computations is

also different from the laminar computations and this difference is again

attributed to the shift in the shock structure as explained above. The

comparison of the wall pressure distributions for the laminar and the turbulent

cases is shown in Fig. 17b. The peak pressure in the turbulent case seems to

be lower than that of the laminar case. Two different sets of computations were
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performed for two different impinging shock locations. Fig. 18 shows the

comparison of the wall heat flux distributions and the wall pressure distributions

for the two impinging shock locations and there is a clear evidence of high

sensitivity of the peak pressure and peak heat flux to the location of the

incoming impinging shock. Table E contains the location of the peaks (in terms

of degrees) of wall pressures and wall heat fluxes for both the cases for this

freestream condition set B. The magnitudes of the peak pressure in Table E are

non-dimensionalized with respect to Po, the theoretical stagnation pressure of

7.005 psia. The magnitudes of the peak heat flux in the table are non-

dimensionalized with respect to qo, the theoretical stagnation heat flux of 19.78

Btu/ft2-sec.

Concluding Remarks

A two-equation compressible turbulence model is implemented in a

point-implicit, cell-centered, upwind algorithm applicable to unstructured grids.

The current turbulence model based on a zonal approach involves k, the

turbulent kinetic energy and co,the specific turbulence dissipation rate as the

two turbulence variables. This model results in the standard k-co model in the

boundary layer next to the wall and results in the standard k-s model away from

the wall by inclusion of a cross-diffusion term in the governing equation for the

specific dissipation rate. The governing equations for the turbulence variables

are solved simultaneously with the equations governing the mean flow. For the

problem of a 2-D hypersonic flow (Mach 11) over a circular cylinder, the peak

heat flux from the laminar flow computations agreed well with the peak heat flux

computed from the Fay and Riddel theory.

For the Type IV shock-shock interference in a hypersonic flow over a

cylinder, two sets of freestream conditions were chosen with two different
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freestream Reynolds numbers. The flow conditions at the higher Reynolds

number freestream conditions are assumed to be turbulent. For the first set of

freestream conditions, the results from the laminar and turbulent computations

did not differ significantly from each other. Highly refined solution adaptive

meshes were used in these computations to capture the intricate flow details

such as the shear layers, the supersonic jet, and the jet terminating shock. The

sensitivity of the augmented pressures and heat fluxes due to the variation in

the location of the incoming impinging shock seem to be less significant for this

freestream condition set.

For the second set of freestream conditions with a higher freestream

Reynolds number, there were significant differences in the results from the

laminar and turbulent conditions. The velocity contours showed thicker shear

layers in the turbulent computations relative to that of laminar computations.

The wall heat flux distribution from the turbulent computations showed a 40%

increase in the value of the peak heat flux compared to that of laminar

computations. The peak wall pressure in the turbulent computations was lower

relative to the peak in the laminar computations.

The current work is one of the first attempts to apply two-equation

turbulence models to the shock-shock interference problem. As the freestream

Reynolds number goes higher, the turbulence effects seem to influence the flow

field stronger and result in

pressures.

higher wall peak heat fluxes and wall peak
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Table A. Freestream conditions used for the Type IV interference analysis

Variable

Velocity

Mach no.

Reynolds no.

Static

Temperature

Static
Pressure

freestream condition set A

8366.87 ft/sec

11.36

6636

O

225.8 R

3.051E-03 psia

freestream condition set B

5018.3 ft/sec

11.03

413,974

83.20 ° R

4.396E-02 psia

Freestream Reynolds number is based on the cylinder radius of 38.1 mm (1.5 in)

*** Flow conditions below the oblique shock were determined based on oblique shock
relations with a flow deflection angle of 10 ° and a shock angle of 14.05 o
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Table B. Coordinates of the triple points and transmitted shock lengths for freestream
condition set A for the impinging shock location 2

1st triple point
Case coords. (non-dim)

1) Laminar

2) Turbulent

x = -1.72069

y = -0.23732

x = -1.70228

y = -0.22691

2nd triple point

coords. (non-dim)

x = -1.10384

y = -0.53386

x=-1.11194

y = -0,51852

Transmitted shock

length, in.

1.02664

0.98765

*** All the coordinates are non-dimensionalized with respect to the cylinder radius of
38.10 mm (1.5 in)
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Table C.

Case

Locations and magnitudes of the pressure and heat flux peaks for freestream
condition set A

Location of the Magnitude of the Location of the Magnitude of the
pr. peak (deg) pr. peak h.f. peak (deg) h.f. peak

1) Laminar

(Impinging I
shock Ioc.1)i

2) Laminar

(Impinging
shock Ioc.2)

3) Turbulent

(Impinging

shock Ioc.2)

-32.00

-29.80

-28.55

17.00

16.59

15.34

-31.63

-29.60

-28.26

23.22

23.60

21.67

*** The magnitudes of the pressure peaks are non-dimensionalized with respect to the
stagnation pressure of 0.5159 psia. and the magnitudes of heat flux peaks are non-
dimensionalized with respect to the stagnation heat flux of 20.26 Btu/ft 2-sec
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Table D. Coordinates of the triple points and transmitted shock lengths for freestream
condition set B for the impinging shock location 2

Case

1) Laminar

2) Turbulent

1st triple point
coords. (non-dim)

x = -1.70352

y = -0.24194

x = -1.77225

y = -0.25909

2nd triple poini Transmitted shock

coords. (non-dim) length, mm.

x = -1.08102

y = -0.54639

x=-1.11177

y = -0.57525

1.03944

1.09837

*** All the coordinates are non-dimensionalized with respect to the cylinder radius of
38.10 mm (1.5 in)
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Table E.

Case

Locations and magnitudes of the pressure and heat flux peaks for freestream
condition set B

Location of the Magnitude of the Location of the Magnitude of the

pr. peak (deg) pr. peak h.f. peak (deg) h.f. peak

1) Laminar
(Impinging
shock Ioc. 1)

2) Laminar
(Impinging
shock Ioc.2)

3) Turbulent
(Impinging
shock Ioc. 1)

4) Turbulent
(Impinging
shock Ioc.2)

-34.26

-30.14

-32.12

-32.53

17.70

15.96

11.18

12.67

-33.76

-29.51

-37.31

-32.45

24.63

29.37

33.15

49.41

The magnitudes of the pressure peaks are non-dimensionalized with respect to the
stagnation pressure for the undisturbed flow of 7.005 psia, and the magnitudes of the
heat flux peaks are non-dimensionalized with respect to stagnation heat flux of
19.78 Btu/ft2-sec
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